
The Programmer Life-Cycle
Russell Ovans

Department of Computer Science
University of Victoria

Victoria, British Columbia V8W 3P6 Canada
rovans@csc.uvic.ca

Abstract

The traditional analysis of programmer productivity ignores
the reality that work rates of programmers are variable over
time. Not unlike the software systems they construct, pro-
grammers follow a predictable life-cycle. However, the pro-
grammer life-cycle is not comprised of activities but rather
by phases that directly affect and predict productivity. The
sequence of phases is: euphoric, productive, irreplaceable,
resentful, bored, and unproductive. Overall productivity is
characterized by an initial six month period of intense inter-
est, at which time productivity rates are often an order of
magnitude higher than the oft-quoted 500 LOC/month aver-
age. After a short period of volatility, the programmer then
enters a prolonged phase of steadily dwindling interest, result-
ing in productivity rates that mimic the average. Each time a
programmer switches employers or begins a significantly new
project, the life-cycle starts anew.

Keywords: Programmer productivity, software life-cycle
model.

Introduction

Most textbooks on software engineering make at least passing
reference to the notion of programmer productivity. The con-
ventional wisdom is that an average programmer completes
500 debugged lines of code (LOC) per month [3]. To students
and professionals alike, this number seems absurdly low. The
standard set of explanations for this phenomenon includes,
among other things, the communication overhead of working
in teams (i.e., the Brooks’ Law [1]), and the time allotted to
non-programming activities like requirements gathering and
design.

These explanations tell only part of the story. While it has
long been accepted that productivity rates can differ by an
order of magnitude between the best and worst programmers
[2], little has been said regarding the reality that work rates
of the same programmer can likewise differ over time. Not
unlike the software systems they construct, programmers fol-
low a predictable life-cycle. However, the programmer life-
cycle is not comprised of activities (e.g., requirements, de-
sign, implementation, testing, and maintenance) but rather
by phases that directly affect and predict productivity. The
sequence of phases is characterized by an initial six month
period of intense interest, at which time productivity rates
are often an order of magnitude higher than the oft-quoted
500 LOC/month average. After a short period of volatility,
the programmer then enters a prolonged phase of steadily
dwindling interest, resulting in productivity rates that mimic
the average. Each time a programmer switches employers or
begins a significantly new project, the life-cycle starts anew.

This conjecture is based purely on my experiences and
observa-tions over the past six years while working as the

senior software engineer for two successful Internet startups
(one in Canada, the other in the United States). The basic
premise of the proposed relationship between phases of the
programmer life-cycle and productivity is the simple obser-
vation that employees are most productive when interest and
satisfaction in their jobs is at its highest.

The Phases of the Programmer Life-Cycle

The programmer life-cycle is comprised of six phases:

• Euphoric

• Productive

• Irreplaceable

• Resentful

• Bored, and

• Unproductive

While this particular life-cycle model is perhaps most likely
to apply to highly productive individuals (so-called star pro-
grammers) working in the 24/7 world of web development and
e-commerce, it is my belief that there are fundamental truths
in its structure that render it applicable to many software
development situations and domains.

Euphoric. The first phase involves the start of a new job or
significantly different project. The programmer is stimulated
by both the newness of the environment and the challenges
ahead. In many cases the programmer’s euphoria is fueled
not only by these changes, but also by the coincident escape
from a previous work situation that had become routine or
was underutilizing his/her talents. This introductory phase
is quite short in duration, lasting only as long as necessary to
acclimatize to the new surroundings, learn a new development
environment, and become familiar with the domain.

Productive. Once acclimatized, the programmer’s work in-
terest reaches a peak. Because of this acute interest, pro-
ductive is at its highest. This phase - which lasts about six
months - is when the programmer develops or takes owner-
ship of some mission-critical software system. This coincides
with steadily rising value to the organization.

These first two phases constitute the “honeymoon period”.
The next two are best described as the “volatility phase”.

Irreplaceable. Management soon recognizes that the pro-
grammer has become a valuable commodity. The program-
mer’s stock within the organization is at an all-time high. As
such, significant increases in compensation and fringe benefits
are doled out in an effort to keep the programmer from leav-
ing. The programmer feels on top of the world. Unfortunately
this will not last.

Resentful. Management - sensing a sudden asymmetry in
the employer-employee relationship - begins to bear resent-
ment that a single individual (the programmer) is now re-
sponsible for the on-going success or failure of the venture.
Fearing a loss of control, management begins to act in a man-
ner suggesting ownership of the programmer’s time and space.
Symptoms of this malaise include requiring the programmer

ACM Software Engineering Notes 25 May 2004 Volume 29 Number 4

to carry a pager, work weekends, install broadband connectiv-
ity at home, and never under any circumstances take holidays.
The programmer starts to receive email at all hours of the day
requesting new features and emergency bug fixes.

In return, the programmer develops feelings of resentment to-
wards management. This is exacerbated by management’s
policy of rewarding the programmer’s competency not with
bonuses and time off, but with additional workload and re-
sponsibilities. The first signs of complacency begin to appear
in the programmer’s workplace attitude.

This unstable time of mutual resentment is necessarily short-
lived, as emotions run too high for the process to carry on for
more than a month or two. The working relationship can
implode during the resentful phase, particularly if volatile
personalities are involved. In the worst case, the program-
mer quits; the additional workload coupled with the stress of
being irreplaceable yet resented becomes too much to take.
However, in most cases the resentful phase merely settles into
an equilibrium of mutual need: management’s need for the
star to carry on keeping the software running, and the pro-
grammer’s need to be a star.

Bored. The post-resentment equilibrium sees the program-
mer’s activities shift more towards ongoing maintenance, con-
sultative meetings with management, and internal knowledge
transfer to other programmers and customer support staff.
Because the initial challenges of the new project, environ-
ment, and technologies have all been met, the intellectual
stimulation has dropped. This leads to boredom. Coupled
with the excessive mental context switching demanded of the
new activities, the programmer’s productivity (as measured
by LOC/month) experiences a significant drop. Despite the
tedium, however, this phase can last indefinitely provided the
productivity remains above the minimum expectation level
given the programmer’s current remuneration.

Unproductive. Like a manic depressive who goes off his
medicine because he misses the occasional euphoric episode,
or a love junkie addicted to the adrenaline rush of the first six
months of a new relationship, the programmer is unlikely to
remain in a state of boredom forever: something has to give.
The change is triggered by a slide into the unproductive phase,
characterized by the programmer working on his/her resume
and visiting job sites on the ’Net, while management views
the programmer as “coasting”, overpriced, and expendable.
One of two outcomes is inevitable: the programmer finds a
new employer, or management moves the programmer to a
significantly new role or project. Either way, the life-cycle
starts again.

Conclusion

This life-cycle model should serve as a cautionary tale to both
programmers and managers. The lesson for the programmer is
to be aware of each phase and its effect on productivity levels,
for ultimately one’s success as a software engineer depends on
one’s perceived productivity. By recognizing the symptoms
of boredom leading to unproductiveness, the programmer can
proactively search for remedies, usually in the form of a frank
discussion with management, or seeking out new projects and
technological chal-lenges.

Conversely, managers must understand the causes and effects
of this life-cycle in order to combat high levels of attrition
and declining productivity. To get the most out of the or-
ganization’s stars, managers must avoid the resentment trap
by resisting the tempta-tion to over-burden the irreplaceable
programmers with additional responsibilities. Instead, man-
agers should look for challenges that will keep the stars at
their peak performance level.

References

[1] Brooks, F. P. Jr. (1975). The Mythical Man-Month: Es-
says on Software Engineering, Addison-Wesley.

[2] Sackman, H. H., W. J. Erikson, and E. E. Grant (1968):
Exploratory experimental studies comparing online and of-
fline programming performance. Communications of the
ACM, 11 (1), pp. 3-11.

[3] Van Vliet, H. (2000): Software Engineering Principles and
Practice (Second Edition), John Wiley & Sons, p. 175.

Editor’s Filler

Want More?

Sure you do!

We all do.

You can see we have some room.

You can be part of the solution, not part of the problem!

ACM Software Engineering Notes 26 May 2004 Volume 29 Number 4

