
Using the Open ASN.1 Compiler

Lev Walkin <vlm@lionet.info >

29th September 2004

Revision : 1.12 – describes asn1c-0.9.6

2

Contents

I ASN.1 Basics 5

1 Abstract Syntax Notation: ASN.1 7
1.1 Some of the ASN.1 Basic Types . 8

1.1.1 The BOOLEAN type . 8
1.1.2 The INTEGER type . 8
1.1.3 The ENUMERATED type 9
1.1.4 The OCTET STRING type 9
1.1.5 The OBJECT IDENTIFIER type 9
1.1.6 The RELATIVE-OID type 10

1.2 Some of the ASN.1 String Types . 10
1.2.1 The IA5String type . 10
1.2.2 The UTF8String type . 10
1.2.3 The NumericString type . 10
1.2.4 The PrintableString type . 10
1.2.5 The VisibleString type . 10

1.3 ASN.1 Constructed Types . 11
1.3.1 The SEQUENCE type . 11
1.3.2 The SET type . 11
1.3.3 The CHOICE type . 11
1.3.4 The SEQUENCE OF type 11
1.3.5 The SET OF type . 12

II Using the ASN.1 Compiler 13

2 Introduction to the ASN.1 Compiler 15

3 Quick start 17

4 Using the ASN.1 Compiler 19
4.1 Command-line options . 19
4.2 Recognizing compiler output . 19
4.3 Invoking the ASN.1 helper code from the application 21

4.3.1 Decoding BER . 22

3

4 CONTENTS

4.3.2 Encoding DER . 24
4.3.3 Encoding XER . 25
4.3.4 Validating the target structure 26
4.3.5 Printing the target structure 26
4.3.6 Freeing the target structure 26

Part I

ASN.1 Basics

5

Chapter 1

Abstract Syntax Notation:
ASN.1

This chapter defines some basic ASN.1 concepts and describes several most widely used
types. It is by no means an authoritative or complete reference. For more complete
ASN.1 description, please refer to Olivier Dubuisson’s book [Dub00] or the ASN.1
body of standards itself [ITU-T/ASN.1].

The Abstract Syntax Notation One is used to formally describe the semantics of
data transmitted across the network. Two communicating parties may have different
formats of their native data types (i.e. number of bits in the integer type), thus it is
important to have a way to describe the data in a manner which is independent from
the particular machine’s representation. The ASN.1 specifications is used to achieve
one or more of the following:

• The specification expressed in the ASN.1 notation is a formal and precise way to
communicate the data semantics to human readers;

• The ASN.1 specifications may be used as input for automatic compilers which
produce the code for some target language (C, C++, Java, etc) to encode and
decode the data according to some encoding rules (which are also defined by the
ASN.1 standard).

Consider the following example:

Rectangle ::= SEQUENCE {
height INTEGER,
width INTEGER

}

This ASN.1 specification describes a constructed type,Rectangle, containing two inte-
ger fields. This specification may tell the reader that there is this kind of data structure
and that some entity may be prepared to send or receive it. The question onhow that
entity is going to send or receive theencoded datais outside the scope of ASN.1. For

7

8 CHAPTER 1. ABSTRACT SYNTAX NOTATION: ASN.1

example, this data structure may be encoded according to some encoding rules and sent
to the destination using the TCP protocol. The ASN.1 specifies several ways of encod-
ing (or ”serializing”, or ”marshaling”) the data: BER, CER, DER and XER, some of
them which will be described later.

The complete specification must be wrapped in a module, which looks like this:

UsageExampleModule1
{ iso org(3) dod(6) internet(1) private(4)

enterprise(1) spelio(9363) software(1)
asn1c(5) docs(2) usage(1) 1 }

DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

-- This is a comment which describes nothing.
Rectangle ::= SEQUENCE {

height INTEGER, -- Height of the rectangle
width INTEGER -- Width of the rectangle

}

END

The module header consists of module name (UsageExampleModule1), the module
object identifier ({...}), a keyword ”DEFINITIONS”, a set of module flags (AUTO-
MATIC TAGS) and ”::= BEGIN”. The module ends with an ”END” statement.

1.1 Some of the ASN.1 Basic Types

1.1.1 The BOOLEAN type

The BOOLEAN type models the simple binary TRUE/FALSE, YES/NO, ON/OFF or
a similar kind of two-way choice.

1.1.2 The INTEGER type

The INTEGER type is a signed natural number type without any restrictions on its
size. If the automatic checking on INTEGER value bounds are necessary, the subtype
constraints must be used.

SimpleInteger ::= INTEGER

-- An integer with a very limited range
SmallPositiveInt ::= INTEGER (0..127)

-- Integer, negative
NegativeInt ::= INTEGER (MIN..0)

1.1. SOME OF THE ASN.1 BASIC TYPES 9

1.1.3 The ENUMERATED type

The ENUMERATED type is semantically equivalent to the INTEGER type with some
integer values explicitly named.

FruitId ::= ENUMERATED { apple(1), orange(2) }

-- The numbers in braces are optional,
-- the enumeration can be performed
-- automatically by the compiler
ComputerOSType ::= ENUMERATED {

FreeBSD, -- will be 0
Windows, -- will be 1
Solaris(5), -- will remain 5
Linux, -- will be 6
MacOS -- will be 7

}

1.1.4 The OCTET STRING type

This type models the sequence of 8-bit bytes. This may be used to transmit some
opaque data or data serialized by other types of encoders (i.e. video file, photo picture,
etc).

1.1.5 The OBJECT IDENTIFIER type

The OBJECT IDENTIFIER is used to represent the unique identifier of any object,
starting from the very root of the registration tree. If your organization needs to
uniquely identify something (a router, a room, a person, a standard, or whatever), you
are encouraged to get your own identification subtree athttp://www.iana.org/
protocols/forms.htm .

For example, the very first ASN.1 module in this document has the following OB-
JECT IDENTIFIER: 1 3 6 1 4 1 9363 1 5 2 1 1.

ExampleOID ::= OBJECT IDENTIFIER

usageExampleModule1-oid ExampleOID
::= { 1 3 6 1 4 1 9363 1 5 2 1 1 }

-- An identifier of the Internet.
internet-id OBJECT IDENTIFIER

::= { iso(1) identified-organization(3)
dod(6) internet(1) }

As you see, names are optional.

10 CHAPTER 1. ABSTRACT SYNTAX NOTATION: ASN.1

1.1.6 The RELATIVE-OID type

The RELATIVE-OID type has the semantics of a subtree of an OBJECT IDENTIFIER.
There may be no need to repeat the whole sequence of numbers from the root of the
registration tree where the only thing of interest is some of the tree’s subsequence.

this-document RELATIVE-OID ::= { docs(2) usage(1) }

this-example RELATIVE-OID ::= {
this-document assorted-examples(0) this-example(1) }

1.2 Some of the ASN.1 String Types

1.2.1 The IA5String type

This is essentially the ASCII, with 128 character codes available (7 lower bits of an
8-bit byte).

1.2.2 The UTF8String type

This is the character string which encodes the full Unicode range (4 bytes) using multi-
byte character sequences.

1.2.3 The NumericString type

This type represents the character string with the alphabet consisting of numbers (”0”
to ”9”) and a space.

1.2.4 The PrintableString type

The character string with the following alphabet: space, ”’ ” (single quote), ”(”, ”)”,
”+”, ” ,” (comma), ”-”, ” .”, ” /”, digits (”0” to ”9”), ” :”, ” =”, ” ?”, upper-case and lower-
case letters (”A” to ”Z” and ”a” to ”z”).

1.2.5 The VisibleString type

The character string with the alphabet which is more or less a subset of ASCII between
the space and the ”~” symbol (tilde).

Alternatively, the alphabet may be described as the PrintableString alphabet pre-
sented earlier, plus the following characters: ”!”, ” ” ”, ” #”, ” $”, ” % ”, ” & ”, ” * ”, ” ;”,
”<”, ” >”, ” [”, ” \”, ”]”, ” ^ ”, ” _”, ” ‘ ” (single left quote), ”{”, ” |”, ” }”, ” ~”.

1.3. ASN.1 CONSTRUCTED TYPES 11

1.3 ASN.1 Constructed Types

1.3.1 The SEQUENCE type

This is an ordered collection of other simple or constructed types. The SEQUENCE
constructed type resembles the C ”struct” statement.

Address ::= SEQUENCE {
-- The apartment number may be omitted
apartmentNumber NumericString OPTIONAL,
streetName PrintableString,
cityName PrintableString,
stateName PrintableString,
-- This one may be omitted too
zipNo NumericString OPTIONAL

}

1.3.2 The SET type

This is a collection of other simple or constructed types. Ordering is not important. The
data may arrive in the order which is different from the order of specification. Data is
encoded in the order not necessarily corresponding to the order of specification.

1.3.3 The CHOICE type

This type is just a choice between the subtypes specified in it. The CHOICE type
contains at most one of the subtypes specified, and it is always implicitly known which
choice is being decoded or encoded. This one resembles the C ”union” statement.

The following type defines a response code, which may be either an integer code
or a boolean ”true”/”false” code.

ResponseCode ::= CHOICE {
intCode INTEGER,
boolCode BOOLEAN

}

1.3.4 The SEQUENCE OF type

This one is the list (array) of simple or constructed types:

-- Example 1
ManyIntegers ::= SEQUENCE OF INTEGER

-- Example 2
ManyRectangles ::= SEQUENCE OF Rectangle

-- More complex example:

12 CHAPTER 1. ABSTRACT SYNTAX NOTATION: ASN.1

-- an array of structures defined in place.
ManyCircles ::= SEQUENCE OF SEQUENCE {

radius INTEGER
}

1.3.5 The SET OF type

The SET OF type models the bag of structures. It resembles the SEQUENCE OF type,
but the order is not important: i.e. the elements may arrive in the order which is not
necessarily the same as the in-memory order on the remote machines.

-- A set of structures defined elsewhere
SetOfApples :: SET OF Apple

-- Set of integers encoding the kind of a fruit
FruitBag ::= SET OF ENUMERATED { apple, orange }

Part II

Using the ASN.1 Compiler

13

Chapter 2

Introduction to the ASN.1
Compiler

The purpose of the ASN.1 compiler, of which this document is part, is to convert the
ASN.1 specifications to some other target language (currently, only C is supported1).
The compiler reads the specification and emits a series of target language structures
and surrounding maintenance code. For example, the C structure which may be cre-
ated by compiler to represent the simpleRectanglespecification defined earlier in this
document, may look like this2:

typedef struct Rectangle_s {
int height;
int width;

} Rectangle_t;

This would not be of much value for such a simple specification, so the compiler goes
further and actually produces the code which fills in this structure by parsing the opaque
binary3 data provided in some buffer. It also produces the code that takes this structure
as an argument and performs structure serialization by emitting a series of bytes.

1C++ is ”supported” too, as long as an class-based approach is not a definitive factor.
2-fnative-typescompiler option is used to produce basic Cint types instead of infinite width INTEGER_t

structures. See Table 4.1 on page 20.
3BER, CER and DER encodings are binary. However, the XER encoding is text (XML) based.

15

16 CHAPTER 2. INTRODUCTION TO THE ASN.1 COMPILER

Chapter 3

Quick start

After building and installing the compiler, theasn1c1 command may be used to compile
the ASN.1 specification2:

asn1c <spec.asn1>

If several specifications contain interdependencies, all of the files must be specified
altogether:

asn1c <spec1.asn1> <spec2.asn1> ...

The compiler-E and-EF options are used for testing the parser and the semantic fixer,
respectively. These options will instruct the compiler to dump out the parsed (and fixed,
if -F is involved) ASN.1 specification as it was "understood" by the compiler. It might
be useful to check whether a particular syntactic construction is properly supported by
the compiler.

asn1c -EF <spec-to-test.asn1>

The -P option is used to dump the compiled output on the screen instead of creating
a bunch of .c and .h files on disk in the current directory. You would probably want
to start with-P option instead of creating a mess in your current directory. Another
option, -R, asks compiler to only generate the files which need to be generated, and
supress linking in the numerous support files.

Print the compiled output instead of creating multiple source files:

asn1c -P <spec-to-compile-and-print.asn1>

1The 1 symbol in asn1c is a digit, not an ”ell” letter.
2This is probablynot what you want to try out right now – read through the rest of this chapter to find

out about-P and-R options.

17

18 CHAPTER 3. QUICK START

Chapter 4

Using the ASN.1 Compiler

4.1 Command-line options

The Table 4.1 on the next page summarizes various options affecting the compiler’s
behavior.

4.2 Recognizing compiler output

After compiling, the following entities will be created in your current directory:

• A set of .c and .h files, generally a single pair for each type defined in the ASN.1
specifications. These files will be named similarly to the ASN.1 types (Rect-
angle.cand Rectangle.hfor the specification defined in the beginning of this
document).

• A set of helper .c and .h files which contain generic encoders, decoders and other
useful routines. There will be quite a few of them, some of them even are not
always necessary, but the overall amount of code after compiling will be rather
small anyway.

It is your responsibility to create .c file with theint main() routine and the Makefile
(if needed). Compiler helps you with the latter by creating the Makefile.am.sample,
containing the skeleton definition for the automake, should you want to use autotools.

In other words, after compiling the Rectangle module, you have the following set
of files: { Makefile.am.sample, Rectangle.c, Rectangle.h,. . . }, where”. . . ” stands for
the set of additional ”helper” files created by the compiler. If you add the simple file
with the int main() routine, it would even be possible to compile everything with the
single instruction:

cc -o rectangle *.c # It could be that simple 1

1Provided that you’ve also created a .c file with theint main()routine.

19

20 CHAPTER 4. USING THE ASN.1 COMPILER

Overall Options Description

-E Stop after the parsing stage and print the reconstructed
ASN.1 specification code to the standard output.

-F Used together with -E, instructs the compiler to stop after the
ASN.1 syntax tree fixing stage and dump the reconstructed
ASN.1 specification to the standard output.

-P Dump the compiled output to the standard output instead of
cre- ating the target language files on disk.

-R Restrict the compiler to generate only the ASN.1 tables,
omit- ting the usual support code.

-S<directory> Use the specified directory with ASN.1 skeleton files.

Warning Options Description
-Werror Treat warnings as errors; abort if any warning is produced.
-Wdebug-lexer Enable lexer debugging during the ASN.1 parsing stage.
-Wdebug-fixer Enable ASN.1 syntax tree fixer debugging during the fixing

stage.
-Wdebug-compiler Enable debugging during the actual compile time.

Language Options Description
-fall-defs-global Normally the compiler hides the definitions

(asn_DEF_xxx) of the inner structure elements
(members of SEQUENCE, SET and other types). This
option makes all such definitions global. Enabling
this option may pollute the namespace by making
lots of asn_DEF_xxx structures globally visible, but
will allow you to manipulate (encode and decode) the
individual members of any complex ASN.1 structure.

-fbless-SIZE Allow SIZE() constraint for INTEGER, ENUMERATED,
and other types for which this constraint is normally prohib-
ited by the standard. This is a violation of an ASN.1 standard
and compiler may fail to produce the meaningful code.

-fnative-types Use the native machine’s data types (int, double) when-
ever possible, instead of the compound ASN.1 INTEGER_t,
ENUMERATED_t and REAL_t types.

-fno-constraints Do not generate ASN.1 subtype constraint checking
code. This may make a shorter executable.

-funnamed-unions Enable unnamed unions in the definitions of target lan-
guage’s structures.

-ftypes88 Use only ASN.1:1988 embedded types.

Output Options Description
-print-constraints When -EF are also specified, this option forces the compiler

to explain its internal understanding of subtype constraints.
-print-lines Generate "– #line" comments in -E output.

Table 4.1: The list of asn1c command line options

4.3. INVOKING THE ASN.1 HELPER CODE FROM THE APPLICATION 21

4.3 Invoking the ASN.1 helper code from the applica-
tion

First of all, you should to include one or more header files into your application. For
our Rectangle module, including the Rectangle.h file is enough:

#include <Rectangle.h>

The header files defines the C structure corresponding to the ASN.1 definition of a rect-
angle and the declaration of the ASN.1 type descriptor, which is used as an argument
to most of the functions provided by the ASN.1 module. For example, here is the code
which frees the Rectangle_t structure:

Rectangle_t *rect = ...;

asn_DEF_Rectangle->free_struct(&asn_DEF_Rectangle,
rect, 0);

This code defines arect pointer which points to the Rectangle_t structure which needs
to be freed. The second line invokes the generic free_struct routine created specifically
for this Rectangle_t structure. Theasn_DEF_Rectangleis the type descriptor, which
holds a collection of generic routines to deal with the Rectangle_t structure.

There are several generic functions available:

ber_decoder This is the genericrestartable2 BER decoder (Basic Encoding Rules).
This decoder would create and/or fill the target structure for you. Please refer to
Section 4.3.1.

der_encoder This is the generic DER encoder (Distinguished Encoding Rules). This
encoder will take the target structure and encode it into a series of bytes. Please
refer to Section 4.3.2.

xer_encoder This is the generic XER encoder (XML Encoding Rules). This encoder
will take the target structure and represent it as an XML (text) document. Please
refer to Section 4.3.3.

check_constraints Check that the contents of the target structure are semantically
valid and constrained to appropriate implicit or explicit subtype constraints. Please
refer to Section 4.3.4 on page 26.

print_struct This function convert the contents of the passed target structure into hu-
man readable form. This form is not formal and cannot be converted back into
the structure, but it may turn out to be useful for debugging or quick-n-dirty
printing. Please refer to Section 4.3.5.

free_struct This is a generic disposal which frees the target structure. Please refer to
Section 4.3.6.

2Restartable means that if the decoder encounters the end of the buffer, it will fail, but may later be
invoked again with the rest of the buffer to continue decoding.

22 CHAPTER 4. USING THE ASN.1 COMPILER

check_constraints Check that the contents of the target structure are semantically valid
and constrained to appropriate implicit or explicit subtype constraints. Please refer to
Section 4.3.4 on page 26.

Each of the above function takes the type descriptor (asn_DEF_. . .) and the target
structure (rect, in the above example). The target structure is typically created by the
generic BER decoder or by the application itself.

Here is how the buffer can be deserialized into the structure:

Rectangle_t *
simple_deserializer(const void *buffer, size_t buf_size) {

Rectangle_t *rect = 0; /* Note this 0! */
ber_dec_rval_t rval;

rval = asn_DEF_Rectangle->ber_decoder(0,
&asn_DEF_Rectangle,
(void **)&rect,
buffer, buf_size,
0);

if(rval .code == RC_OK) {
return rect; /* Decoding succeeded */

} else {
/* Free partially decoded rect */
asn_DEF_Rectangle->free_struct(

&asn_DEF_Rectangle, rect, 0);
return 0;

}
}

The code above defines a function,simple_deserializer, which takes a buffer and its
length and expected to return a pointer to the Rectangle_t structure. Inside, it tries
to convert the bytes passed into the target structure (rect) using the generic BER de-
coder and returns the rect pointer afterwards. If the structure cannot be deserialized, it
frees the memory which might be left allocated by the unfinishedber_decoderroutine
and returns NULL.This freeing is necessarybecause the ber_decoder is a restartable
procedure, and may fail just because there is more data needs to be provided before
decoding could be finalized. The code above obviously does not take into account the
way theber_decoderfailed, so the freeing is necessary because the part of the buffer
may already be decoded into the structure by the time something goes wrong.

Restartable decoding is a little bit trickier: you need to provide the old target struc-
ture pointer (which might be already half-decoded) and react on RC_WMORE return
code. This will be explained later in Section 4.3.1

4.3.1 Decoding BER

The Basic Encoding Rules describe the basic way how the structure can be encoded and
decoded. Several other encoding rules (CER, DER) define a more restrictive versions

4.3. INVOKING THE ASN.1 HELPER CODE FROM THE APPLICATION 23

of BER, so the generic BER parser is also capable of decoding the data encoded by
CER and DER encoders. The opposite is not true.

The ASN.1 compiler provides the generic BER decoder which is implicitly capable
of decoding BER, CER and DER encoded data.

The decoder is restartable (stream-oriented), which means that in case the buffer
has less data than it is expected, the decoder will process whatever it is available and
ask for more data to be provided. Please note that the decoder may actually process
less data than it is given in the buffer, which means that you should be able to make the
next buffer contain the unprocessed part of the previous buffer.

Suppose, you have two buffers of encoded data: 100 bytes and 200 bytes.

• You may concatenate these buffers and feed the BER decoder with 300 bytes of
data, or

• You may feed it the first buffer of 100 bytes of data, realize that the ber_decoder
consumed only 95 bytes from it and later feed the decoder with 205 bytes buffer
which consists of 5 unprocessed bytes from the first buffer and the latter 200
bytes from the second buffer.

This is not as convenient as it could be (like, the BER encoder would consume the
whole 100 bytes and keep these 5 bytes in some temporary storage), but in case of
stream-based processing it might actually be OK. Suggestions are welcome.

There are two ways to invoke a BER decoder. The first one is a direct reference
of the type-specific decoder. This way was shown in the previous example ofsim-
ple_deserializerfunction. The second way is to invoke aber_decodefunction, which
is just a simple wrapper of the former approach into a less wordy notation:

rval = ber_decode(0, &asn_DEF_Rectangle, (void **)&rect,
buffer, buf_size);

Note that the initial (asn_DEF_Rectangle->ber_decoder) reference is gone, and also
the last argument (0) is no longer necessary.

These two ways of invocations are fully equivalent.
The BER decodermay fail because of (the following RC_. . . codes are defined in

ber_decoder.h):

• RC_WMORE: There is more data expected than it is provided (stream mode
continuation feature);

• RC_FAIL: General failure to decode the buffer;

• . . . other codes may be defined as well.

Together with the return code (.code) the ber_dec_rval_t type contains the number of
bytes which is consumed from the buffer. In the previous hypothetical example of two
buffers (of 100 and 200 bytes), the first call to ber_decode() would return with .code
= RC_WMORE and .consumed = 95. The .consumed field of the BER decoder return
value isalwaysvalid, even if the decoder succeeds or fails with any other return code.

Please look into ber_decoder.h for the precise definition of ber_decode() and related
types.

24 CHAPTER 4. USING THE ASN.1 COMPILER

4.3.2 Encoding DER

The Distinguished Encoding Rules is thecanonicalvariant of BER encoding rules. The
DER is best suited to encode the structures where all the lengths are known beforehand.
This is probably exactly how you want to encode: either after a BER decoding or after
a manual fill-up, the target structure contains the data which size is implicitly known
before encoding. The DER encoding is used, for example, to encode X.509 certificates.

As with BER decoder, the DER encoder may be invoked either directly from the
ASN.1 type descriptor (asn_DEF_Rectangle) or from the stand-alone function, which
is somewhat simpler:

/*
* This is a custom function which writes the
* encoded output into some FILE stream.
*/

static int
write_stream(const void *buffer, size_t size, void *app_key) {

FILE *ostream = app_key;
size_t wrote;

wrote = fwrite(buffer, 1, size, ostream);

return (wrote == size) ? 0 : -1;
}

/*
* This is the serializer itself,
* it supplies the DER encoder with the
* pointer to the custom output function.
*/

ssize_t
simple_serializer(FILE *ostream, Rectangle_t *rect) {

asn_enc_rval_t er; /* Encoder return value */

er = der_encode(&asn_DEF_Rect, rect,
write_stream, ostream);

if(er. encoded == -1) {
/*

* Failed to encode the rectangle data.
*/

fprintf(stderr, ”Cannot encode %s: %s\n”,
er. failed_type ->name,
strerror(errno));

return -1;
} else {

/* Return the number of bytes */
return er.encoded;

4.3. INVOKING THE ASN.1 HELPER CODE FROM THE APPLICATION 25

}
}

As you see, the DER encoder does not write into some sort of buffer or something.
It just invokes the custom function (possible, multiple times) which would save the
data into appropriate storage. The optional argumentapp_keyis opaque for the DER
encoder code and just used by_write_stream()as the pointer to the appropriate output
stream to be used.

If the custom write function is not given (passed as 0), then the DER encoder will
essentially do the same thing (i.e., encode the data) but no callbacks will be invoked
(so the data goes nowhere). It may prove useful to determine the size of the structure’s
encoding before actually doing the encoding3.

Please look into der_encoder.h for the precise definition of der_encode() and related
types.

4.3.3 Encoding XER

The XER stands for XML Encoding Rules, where XML, in turn, is eXtensible Markup
Language, a text-based format for information exchange. The encoder routine API
comes in two flavors: stdio-based and callback-based. With the callback-based en-
coder, the encoding process is very similar to the DER one, described in Section 4.3.2 on
the preceding page. The following example uses the definition of write_stream() from
up there.

/*
* This procedure generates the XML document
* by invoking the XER encoder.
* NOTE: Do not copy this code verbatim!
* If the stdio output is necessary,
* use the xer_fprint() procedure instead.
* See Section 4.3.5 on the following page.
*/

int
print_as_XML(FILE *ostream, Rectangle_t *rect) {

asn_enc_rval_t er; /* Encoder return value */

er = xer_encode(&asn_DEF_Rect, rect,
XER_F_BASIC, /* BASIC-XER or CANONICAL-XER */
write_stream, ostream);

return (er.encoded == -1) ? -1 : 0;
}

Please look into xer_encoder.h for the precise definition of xer_encode() and related
types.

3It is actually faster too: the encoder might skip over some computations which aren’t important for the
size determination.

26 CHAPTER 4. USING THE ASN.1 COMPILER

See Section 4.3.5 for the example of stdio-based XML encoder and other pretty-
printing suggestions.

4.3.4 Validating the target structure

Sometimes the target structure needs to be validated. For example, if the structure was
created by the application (as opposed to being decoded from some external source),
some important information required by the ASN.1 specification might be missing. On
the other hand, the successful decoding of the data from some external source does
not necessarily mean that the data is fully valid either. It might well be the case that
the specification describes some subtype constraints that were not taken into account
during decoding, and it would actually be useful to perform the last check when the
data is ready to be encoded or when the data has just been decoded to ensure its validity
according to some stricter rules.

The asn_check_constraints() function checks the type for various implicit and ex-
plicit constraints. It is recommended to use asn_check_constraints() function after each
decoding and before each encoding.

Please look into constraints.h for the precise definition of asn_check_constraints()
and related types.

4.3.5 Printing the target structure

There are two ways to print the target structure: either invoke the print_struct member
of the ASN.1 type descriptor, or using the asn_fprint() function, which is a simpler
wrapper of the former:

asn_fprint(stdout, &asn_DEF_Rectangle, rect);

Please look into constr_TYPE.h for the precise definition of asn_fprint() and related
types.

Another practical alternative to this custom format printing would be to invoke
XER encoder. The default BASIC-XER encoder performs reasonable formatting for
the output to be useful and human readable. To invoke the XER decoder in a manner
similar to asn_fprint(), use the xer_fprint() call:

xer_fprint(stdout, &asn_DEF_Rectangle, rect);

See Section 4.3.3 on the page before for XML-related details.

4.3.6 Freeing the target structure

Freeing the structure is slightly more complex than it may seem to. When the ASN.1
structure is freed, all the members of the structure and their submembers etc etc are
recursively freed too. But it might not be feasible to free the structure itself. Consider
the following case:

4.3. INVOKING THE ASN.1 HELPER CODE FROM THE APPLICATION 27

struct my_figure { /* The custom structure */
int flags; /* <some custom member> */
/* The type is generated by the ASN.1 compiler */
Rectangle_t rect;
/* other members of the structure */

};

In this example, the application programmer defined a custom structure with one ASN.1-
derived member (rect). This member is not a reference to the Rectangle_t, but an
in-place inclusion of the Rectangle_t structure. If the freeing is necessary, the usual
procedure of freeing everything must not be applied to the &rect pointer itself, because
it does not point to the memory block directly allocated by memory allocation routine,
but instead lies within such a block allocated for my_figure structure.

To solve this problem, the free_struct routine has the additional argument (besides
the intuitive type descriptor and target structure pointers), which is the flag specifying
whether the outer pointer itself must be freed (0, default) or it should be left intact
(non-zero value).

/* Rectangle_t is defined within my_figure */
struct my_figure *mf = ... ;
/*

* Freeing the Rectangle_td
* without freeing the mf->rect pointer
*/

asn_DEF_Rectangle->free_struct(
&asn_DEF_Rectangle, &mf->rect, 1 /* !free */);

/* Rectangle_t is a stand-alone pointer */
Rectangle_t *rect = ... ;
/*

* Freeing the Rectangle_t
* and freeing the rect pointer
*/

asn_DEF_Rectangle->free_struct(
&asn_DEF_Rectangle, rect, 0 /* free the pointer too */);

It is safe to invoke thefree_structfunction with the target structure pointer set to 0
(NULL), the function will do nothing.

28 CHAPTER 4. USING THE ASN.1 COMPILER

Bibliography

[ASN1C] The OpenSource ASN.1 Compiler.http://lionet.info/
asn1/

[Dub00] Olivier Dubuisson –ASN.1 Communication between heterogeneous
systems– Morgan Kaufmann Publishers, 2000.http://asn1.
elibel.tm.fr/en/book/ . ISBN:0-12-6333361-0.

[ITU-T/ASN.1] ITU-T Study Group 17 – Languages for Telecommunication Systems
http://www.itu.int/ITU-T/studygroups/com17/
languages/

29

